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Raman spectral imaging has been widely used for extracting chemical

information from biological specimens. One of the challenges is to cluster

the chemical groups from the vast amount of hyperdimensional spectral

imaging data so that functionally similar groups can be identified. In this

paper, we present an approach that combines a differential wavelet-based

data smoothing with a fuzzy clustering algorithm for the classification of

Raman spectral images. The preprocessing of the spectral data is

facilitated by decomposing them in the differential wavelet domain,

where the discrimination of true spectral features and noise can be easily

performed using a multi-scale pointwise product (MPP) criterion. This

approach is applied to the classification of spectral data collected from

adhesive/dentin interface specimens where the spectral data exhibit

different signal-to-noise ratios. The proposed wavelet approach has been

compared to several conventional noise-removal algorithms.

Index Headings: Raman imaging; Wavelets; Multi-spectral image; Raman

spectroscopy; Fuzzy c-means clustering; Image classification.

INTRODUCTION

Raman spectral imaging can provide qualitative and
quantitative information about complex biological samples.
One of the challenges of Raman imaging is to condense the
vast amount of spectral information into compact, easily
visible, and more meaningful data, which would facilitate the
identification of chemical groups with similar expression
patterns across one or more spectra. The solution to this
problem involves high-dimensional data clustering. Conven-
tional multivariate approaches such as principal component
analysis (PCA), least squares curve fitting, discriminant
analysis, and multivariate curve regression have been effective
in processing the spectral data.1

In this paper, we applied a fuzzy-based clustering approach
to classify the Raman spectral data collected from the
components that make up the adhesive/dentin interface. In
multi-spectral data classification, the high dimensional spectral
representations of a pixel are usually used as features to
classify the pixel into a certain chemical group. The
conventional clustering approaches label a pixel as a particular
class by using a binary membership value of either 0 or 1. The
fuzzy-based approaches,14 however, will assign the pixel
a membership degree between 0 and 1 considering the fact
that the chemical groups are not completely well separated.

These realistic models are more appropriate for clustering the
Raman spectral data.

Because of the intrinsic connection between the input
features and a classifier, the redundancy in the spectral data,
including the noise, should be reduced in order to improve the
classification accuracy. For Raman imaging data, both in-
terfering noise and fluorescence background could adversely
affect the accuracy of the classification. A number of
smoothing approaches have been used for preprocessing the
Raman spectral data.2 These methods include Savitzky–Golay
(SG) smoothing3 and derivative extraction, spline fit sub-
traction (SFS),4 and low-pass Fourier transform (FFT) based
filtering. These traditional smoothing approaches, however,
suffer from a number of limitations. Both the SG- and SFS-
based approaches use a polynomial and spline regression,
which could attenuate or distort the true spectral features.
Because most salient features occur at the peak of the spectral
data, the FFT-based method cannot discriminate the feature
from the noise by frequency analysis. These limitations have
prompted our research efforts to apply a wavelet-based
approach to the processing of Raman spectral imaging data.

Wavelet transform is a powerful mathematical transform that
has already found wide-spread applications in image compres-
sion, vision analysis, and statistical data analysis.5 Wavelet
functions are distinguished from other transforms such as
Fourier transform because they not only dissect signals into
their component frequencies, but also vary the scale at which
the component frequencies are analyzed. As a result, wavelets
are exceptionally suited for applications such as data
compression, noise reduction, and singularity detection. There
are reports in the literature on the application of wavelets in
processing spectroscopic data,6 especially for Raman spectral
data denoising.7–10 In these studies, denoising was performed
using conventional orthogonal or bi-orthogonal wavelet trans-
forms followed by thresholding approaches. However, it has
been shown that the denoising using a standard wavelet
transform can exhibit Gibbs phenomena11 and that a trans-
lation-invariant wavelet transform is more favorable. Further-
more, no objective evaluation of these denoising approaches is
available in the literature. We believe that in order to evaluate
noise-removal approaches one should test whether they can
improve the subsequent data analysis such as the clustering.

In this study, we applied a special family of differential
wavelets12 that was previously designed by one of the authors.
These wavelets provide a redundant representation of a signal,
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which is advantageous in image denoising and enhancement.13

The evaluation of a data denoising process is usually performed
by measuring the increase in the signal-to-noise ratio (SNR).
However, measuring the noise can be challenging, which
makes the SNR difficult to calculate. A more objective and
easy to use criterion is that the noise removal should improve
the subsequent data clustering or classification.

THEORY

Translation-Invariant Differential Wavelet Transform. A
family of wavelets designed by one of the authors12 is
translation invariant, which offers advantages when applied to
signal feature extraction, enhancement, and denoising. This
approach has been previously discussed15 and used for
chromosome image enhancement.13 These wavelets are simply
taken as the first- and second-order derivatives of spline
functions:12

wnðxÞ ¼ d

dx
bnþ1ðxÞ ð1aÞ

or

wnðxÞ ¼ d2

dx2
bnþ1ðxÞ ð1bÞ

where bn(x) is the B-spline of order n.
If we define the smoothing and wavelet transforms of

a signal f at the dyadic scales as S2j f and W2j f , we can compute
the smoothing operation and wavelet transforms using a fast
iterative algorithm:

S2j f ¼ S2j�1 f �h"2j�1

W2j f ¼ S2j�1 f �g"2j�1 ; j ¼ 1; 2; . . . ; J

�
ð2Þ

where fhg and fgg are the low-pass and high-pass filters,
respectively. :2j is the up-sampling operation. Conversely, the
signal can be recovered by

S2j�1 f ¼ S2j f � ~h"2j�1 þW2j f � ~g"2j�1 ð3Þ

where fh̃g and fg̃g are the reconstruction filters. This iterative
algorithm is called a pyramid-like algorithm.12

Unlike the conventional pyramid algorithm for orthogonal or
bi-orthogonal wavelet decompositions,5 no down-samplings
are performed in Eq. 2 because the continuous spline wavelet
transforms are discretized along the dyadic scales. For the same
reason, the transform is translation invariant.12 This property is
ideal for analyzing spectral patterns. When the spectral signal is
decomposed in the differential wavelet domain, the true
features or patterns still maintain strong correlations across
different resolutions while noise components do not. The
second advantage is that the wavelets are actually the
derivative operations followed by spline smoothing, which is
extremely suitable for identifying peaks in the Raman spectral
data. The third advantage of the decomposition equation (Eq.

2) is that the filters fhg and fgg are binomials and difference
operations. Therefore, only additions are needed when they are
implemented. Filters of any order can be found in the
previously published study.12 In the following we list several
filters of lower orders that are used in our experiments.

Haar-like Wavelets. The Haar-like wavelets are derived
when the order of the spline is taken as 0. Table I lists the finite
impulse responses (FIRs) of the decomposition and recon-
struction filters. These filters (except for the normalization
constant) are identical to the conventional Haar filters for
orthogonal wavelet transform. The difference between them is
that no down-sampling is performed in the decomposition
formula (Eq. 2).

Linear and Cubic Differential Wavelets. The FIRs of
linear and cubic differential spline wavelets, which have been
used to evaluate the proposed algorithms, are listed in Tables II
and III. These filters are derived from linear and cubic B-
splines. Different orders of spline filters will have different
denoising effects.

Denoising Based on Multiscale Point-wise Products.
Wavelet-based denoising is usually performed by a hard- and
soft-thresholding approach.16 It has been shown that a trans-
lation-invariant transform would produce better results.11 The
specific differential wavelet transforms (Eq. 2) can facilitate the
pattern correlation analysis between different scales. Because
there is no down-sampling, the feature patterns such as peaks
of the signal will have strong spatial alignment (correlation) in
the multiscale domain, while noise will not. A quantitative way
to measure the cross-scale correlation of the spectral features is
by using the multiscale point-wise products (MPPs).17 These
are often used in computer vision and image analysis.18,19 The
MPP criterion is defined as

MPPKðnÞ ¼
YK
j¼1

W2j f ðnÞ ð4Þ

where W2j ff g is the wavelet decomposition at scale j. This
measurement can exploit the multiscale correlation due to the
presence of desired peaks.

TABLE I. FIR filters for decomposition and reconstruction based on the
0th-order splines.

Taps h h̃ g g̃

�1 1/2 1/2 �1 1/4
0 1/2 1/2 1 1/4

TABLE II. FIR filters for decomposition and reconstruction based on
the 1st-order splines.

Taps h h̃ g g̃

�2 1/16
�1 1/4 1/4 �1 5/16

0 1/2 1/2 1 �5/16
1 1/4 1/4 1/16

TABLE III. FIR filters for decomposition and reconstruction based on
the cubic splines.

Taps h h̃ g g̃

�4 1/256
�3 9/256
�2 1/16 1/16 37/256
�1 1/4 1/4 �1 93/256

0 3/8 3/8 1 �93/256
1 1/4 1/4 �37/256
2 1/16 1/16 �9/256
3 �1/256
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In order to illustrate the correlation analysis using MPP, we
use a spectral signal displayed in Fig. 1a. Noise is added to this
signal (Fig. 1b). Figure 2 displays the multiscale wavelet
decompositions of the spectral signal shown in Fig. 1b from
scale 1 to 5. The last row is the smoothing component of the
signal. From Fig. 2 it can be seen that the noise is mainly left in
the high resolution while peak patterns spread over several
scales. Figure 3 shows the values of the MPPs that are
computed between two neighboring scales (1–2, 2–3, 3–4, and
4–5). It is evident that the MPPs have larger values in the
neighborhood of peaks corresponding to true spectral features
but take smaller values at other locations corresponding to
noise. We have previously used MPPs to enhance the
chromosomal banding patterns in a cell image.13 The de-
termination of the first-order probability distribution function
(PDF) of the MPP was introduced in Ref. 17.

Let W2i f and W2j f be joint Gaussian with the zero-mean and
the covariance matrix

C ¼ r2
1 q12r1r2

q12r1r2 r2
2

� �
ð5Þ

where q12 is the correlation coefficient. Then, the two-scale
point-wise product MMP2(K) has the PDF:

PDFðxÞ ¼ 1

pr1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

12

p expðq12r1r2xÞK0ðr1r2jxjÞ ð6Þ

where K0 is the modified Bessel function of the second kind
and zero order. The PDF of the MPP is generally non-Gaussian
heavy tailed.17 There is a sharp peak around the origin of x¼ 0,
which indicates that the majority of the MPP values are zeros.
The larger values of MPP correspond to a small probability
(outliers), implying the rare occurrence of the spectral peaks.

Based on the fact that the majority of MPP values correspond
to the noise and only a few MPP values correspond to the
occurrence of peak patterns, we can design a thresholding
algorithm to identify the peaks. This can be formulated as
a statistical inference problem. We denote the null hypothesis of
no peak being present by H0 and give an upper limit a to the
probability of erroneously rejecting H0 when in fact it is true.
Then, the decision rule is given by the following: if MPP(x) �
MPP(a), we can reject the null hypothesis with confidence 1�
a; otherwise, we fail to reject it. In this decision rule, MPP(a) is
the horizontal axis value for which the area under the right tail
of the PDF is a. The threshold level T is taken as this value, i.e.,Z ‘

T

PDFðxÞdx ¼ a ð7Þ

The threshold is actually determined by the confidence level
1� a. Using this threshold value, we can perform the following
thresholding to magnify the wavelet coefficients for feature
patterns while setting the coefficients for noise to be zero:

~W2j f ðnÞ ¼ W2j f ðnÞ if MPPðnÞ. T
0 otherwise

�
ð8Þ

It is critical to choose a proper threshold level because the
choice of a low threshold may render some spikes as peaks,
while choosing a high threshold might skip some of the
important peaks. In other words, higher threshold values can
make the algorithm insensitive and would sometimes skip valid
peaks, while too low a threshold would detect peak patterns

FIG. 1. (a) A spectral channel signal. (b) 20% noise is added to the signal. (c)
The spectrum is denoised using MPP with thresholding.
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with weak strength that might be noise. In practice, we
normalize the MPP value to be within [0, 1]. The threshold is
specified in terms of the percentage of the maximum MPP
value. The wavelet thresholding procedure can be summarized
in the following steps.

Wavelet-Based Noise-Removal Procedure.
(1) Decompose hyperspectral data into the differential wavelet

domain according to Eq. 2.

(2) Perform the thresholding of wavelet coefficients in terms of

Eq. 8.

(3) Reconstruct the spectral data using Eq. 3 to obtain a clean

signal.

Fuzzy-Based Clustering of Spectral Imaging Data. The

goal of clustering is to assign each pixel in the spectral sample

to belong to different clusters based on the multi-spectral

FIG. 2. The decomposition of the spectral signal in the wavelet domain. The figure in the last row shows the smoothing component of the signal.

FIG. 3. The plot of multiscale point-wise products (MPPs) between the two neighboring scales of the spectral signal (shown at the top), which measure the cross-
scale correlations of the signal.
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representations collected from the biological specimen. In this
section, we introduce a fuzzy-based unsupervised approach to
this problem. This more sophisticated approach assumes that
a pixel can belong to more than one class but varies in degree
from 0 to 1. The fuzzy-based approach offers advantages over
the conventional hard clustering technique, which has been
widely used in many biomedical imaging problems.14

K-Means or Hard C-Means Clustering. Clustering is
a technique to divide a data set into clusters or classes of
similar attributes. In conventional cluster analysis, each class or
sample is assigned to exactly one cluster. Thus, we obtain
a crisp partitioning with sharp boundaries between the clusters.
Fuzzy clustering relaxes such restriction; it allows a sample to
belong to more than one class in terms of degree of similarity
between 0 and 1.

The traditional k-means or hard c-means clustering is
obtained by minimizing a dissimilarity (or distance) function
given by

J ¼
Xc

i¼1

Ji ¼
Xc

i¼1

X
xk2Gi

dðxk; ciÞ ð9Þ

where ci is the centroid of cluster i and d(xk, ci) is the distance
between the ith centroid ci and the kth data point xk. Typically,
the Euclidian distance is used as the dissimilarity measure and
the overall dissimilarity function is expressed as

J ¼
Xc

i¼1

Ji ¼
Xc

i¼1

X
xk2Gi

jjxk � cijj2 ð10Þ

With the minimization of this objective function, partitioned
groups can be defined by a c 3 N binary membership matrix U,
where its element uij is 1 if the jth data point xj belongs to the
group Gi, and 0 otherwise.

lij ¼
1; if jjxj � cijj2 � jjxj � ckjj2; for each k 6¼ i
0; otherwise

�
ð11Þ

The minimization according to this membership matrix leads to
the k-means clustering algorithm or the hard c-means (HCM)
clustering.

Fuzzy C-Means Clustering. The fuzzy c-means clustering
(FCM) represents an improvement over the HCM since it
employs a fuzzy partitioning so that a data point can belong to
all groups with different membership grades between 0 and 1.
The objective function used in the FCM to measure the overall
data dissimilarity is given by

JðU;C1;C2; . . . ;CcÞ ¼
Xc

i¼1

Ji ¼
Xc

i¼1

XN

j¼1

um
ij d2

ij ð12Þ

where uij is between 0 and 1, ci is the centroid of cluster i, and
dij is the Euclidian distance between the ith centroid ci and the
jth point. m is the fuzzifier that controls the degree of fuzziness;
higher values make the boundary between the clusters softer,
while lower values make it harder. Moreover, the membership
values are required to satisfy the following constraint:

Xc

i¼1

XN

j¼1

uij ¼ 1 ð13Þ

If additional terms are introduced to regularize the above
minimization problem so that

JðU;C1;C2; . . . ;CcÞ ¼
Xc

i¼1

XN

j¼1

um
ij d2

ij þ
Xc

i¼1

wi

XN

j¼1

ð1� mijÞm

ð14Þ

one can obtain the possibilistic c-means clustering (PCM).
The class of the chemical groups to which the pixel j belongs

is determined by the maximum value of the membership
function uij. The object functions in Eqs. 10, 12, and 14 are
usually minimized by a two-step numerical optimization
algorithm.14 For the FCM, the iteration equations are

ci ¼

XN

j¼1

um
ij xj

XN

j¼1

um
ij

; uij ¼
1Xc

k¼1

dij

dik

� �2=ðm�1Þ ð15Þ

For PCM, the equations are

ci ¼

XN

j 6¼1

um
ij xj

XN

j¼1

um
ij

; uij ¼
1

1þ
d2

ij

wi

" #1=ðm�1Þ ð16Þ

The membership uij and the cluster centroids ci are updated in
an alternating approach according to the above equations until
the change of the membership function values is less than
a predefined threshold.

MATERIALS AND METHODS

This section evaluates the performance of the proposed
algorithms when applied to real Raman spectral imaging data.

In order to validate the algorithm, we prepared adhesive/
dentin interface specimens containing three classes of chemical
components. This model has been studied previously.20

The experimental apparatus used to collect the Raman
spectra was a Jasco NRS 2000 Raman spectrometer equipped
with Olympus lenses and a liquid nitrogen cooled charge-
coupled device (CCD) detector. Confocal Raman microscopy
offers the unique opportunity to both image the interface and
obtain chemical information. It allows visual identification of
the position at which the Raman spectrum is obtained. The
excitation source was an argon laser operating at 514.5 nm.
The estimated power at the laser was 100 mW. After passing
through the band pass filter and condensing optics, an
approximately 3 mW power laser was incident upon the
sample. Instrument fluctuation was evaluated by comparing
spectra from standards such as silicon, and each spectrum was
frequency calibrated and corrected for chromatic variations in
the spectrometer system detection. The adhesive/dentin
specimen was placed at the focus of a 1003 objective with
a numeric aperture of 0.95 and a working distance of 0.3 mm.
The spectra were acquired at positions corresponding to 1 lm
intervals across the adhesive/dentin interface using the
computer-controlled x-y-z stage with a minimum step width
of 50 nm. The focus of the laser beam in conjunction with a 25
mm confocal aperture provided a spatial resolution of 1 lm.
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Well-defined areas as small as 1 lm in diameter can be probed.
Spectra were obtained at a resolution of 6 cm�1 over the
spectral region of 875-1785 cm�1, with an integration time of
60 s. Six specimens were used. A digital image of the adhesive/
dentin interface with demarcations identifying the position of
each spectrum was recorded simultaneously. Multiple sites
across the interface of each specimen were examined
spectroscopically. Overlap of the spectra from these sites
confirmed the reproducibility of the technique.

As an example of illustration, the chemical image of the
adhesive/dentin interface at 1453 cm�1 is shown in Fig. 4. The
regions of the three chemical components of the specimen are
shown in pseudo-color (printed in gray scale). Each pixel in the
image represents the peak intensity value of the spectral data.
The left portion of the figure is the dentin (C), the right part is
the adhesive (A), and the middle part is the adhesive/dentin
interface (B).

The Raman spectral data set can be represented by an N 3 P
matrix xp

nf g, where n¼ 1, 2, . . . , N is the index of pixels in the
image, and p¼ 1, 2, . . . , P denotes the spectral channel or the
wavenumber. In the present experiment the number of pixels in
the image was taken to be N ¼ 100. The number of spectral
bands was P ¼ 1091. Therefore, each pixel in the image was
represented by a spectrum spanning over the 1091 wave-
lengths. These spectral data were used as features to classify
each pixel into one of the three classes or regions, i.e., adhesive
(class A), dentin/adhesive interface (class B), and dentin (class
C).

RESULTS

In order to test the performance of the algorithms, we added
different levels of noise to the spectral data that we collected.

The noise is assumed to be a Gaussian white noise. The level of
the noise is specified by a percentage of the maximum peak
intensity, i.e., 10, 20, etc.

Evaluation of the Preprocessing Algorithm Using
Different Classifiers. To evaluate whether the noise removal
can improve the classification, we tested the classification of
the Raman spectral data with and without wavelet-based
smoothing. Table IV lists the comparison of classification
using the HCM approach with and without wavelet preprocess-
ing. Table V compares the classification results for the same
data using FCM. These results indicate that significant
improvement of the classification accuracy can be obtained
after noise removal, independent of the clustering approaches.
This further confirms that the preprocessing must be completed
before the spectral data clustering or classification is applied.

The experiments also demonstrated that the fuzzy c-means
(FCM) based classification, in general, can produce better
classification over the hard c-means (HCM) in terms of average
classification error and standard deviation, with or without
spectral smoothing.

Comparison Between Different Noise-Removal Ap-
proaches. An objective way to compare the performance of
different denoising algorithms is to evaluate whether the
subsequent data clustering or classification can be improved
after the data preprocessing. Because the FCM, on average, led
to better accuracy, we used the FCM for comparison when
using several different noise-removal approaches. Extensive
tests have been conducted. As an example of illustration, Table
VI lists the accuracy of the algorithm on one data set to which
seven different noise levels were added. For the statistical
analysis, we also performed ten runs at each of the noise levels

FIG. 4. The Raman spectra data at the 1453 cm�1 position is shown as
a pseudo-color image (printed in gray scale). More specifically, every pixel in
the image that corresponds to the peak of the spectral data is drawn in pseudo-
color (printed in gray scale).

TABLE IV. A comparison of the pixel-wise classification accuracy (in percentage) using HCM with and without denoising.

Noise levels 20 25 30 50 90 140 160 Average Std

Without denoising 66.67 70.00 63.33 61.67 58.33 31.66 31.66 54.76 15.00
With denoising 100.00 100.00 98.33 93.33 90.00 66.68 66.68 87.86 13.82

FIG. 5. A plot of the mean and standard deviation of classification accuracy as
a function of noise levels after noise removal using Haar wavelet and Savitzky–
Golay filter of order 3. The result of using wavelet noise removal is shown as
a solid line.
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to calculate the mean and standard deviation of the different
methods. For example, Fig. 5 compares the mean and standard
deviation of the classification accuracy as a function of noise
levels between the Haar wavelet filter and the Savitzky–Golay
filter of order 3.

From Table VI and Fig. 5, it can be seen that (1) any
denoising approach can improve the classification, and (2) the
wavelet, spline, and Savitzky–Golay based denoising methods
give comparable results; however, the wavelet approach
provides the highest average accuracy from a noise level
between 50% to 120%.

DISCUSSION AND CONCLUSION

Spectroscopic imaging is an important modality for the study
of the spatial relationships and distributions of functional or
chemical groups. The challenge associated with this technique
is to condense the vast amount of data into a compact, easily
visible, and more meaningful format. The presence of noise in
the spectral data can make the problem more difficult. In this
paper, we have applied a differential wavelet-based approach
for noise reduction in combination with fuzzy clustering. We
have tested this algorithm on adhesive/dentin interface speci-
mens with different noise levels and have shown that noise
removal can improve the classification accuracy. When
comparing wavelet filtering to spline and Savitzky–Golay
filtering, comparable results were observed. However, the
wavelet-based approach, on average, provides better accuracy.
Furthermore, because of the localization property, wavelet
filters produce visually more appealing results in the neighbor-
hood of peak patterns, which usually carry the most important
information. We have also shown that FCM outperforms HCM
in terms of the average classification accuracy. Because FCM is
an unsupervised approach, no training data are needed to find
the cluster centers. This is especially useful when studying the
composition of complex biological materials for which training
data are often not available.

In this paper we have taken advantage of a special family of

differential wavelets that are translation invariant.12 These
representations enable us to discriminate between the true
feature patterns and the noise. In particular, we made use of the
multiscale point-wise product to characterize the cross-scale
correlations of the spectral signals. We are aware of other
wavelet denoising approaches that have been proposed.7–10 In
these approaches, the thresholding was performed in the
standard orthogonal wavelet transform domain. However, as
discussed in Ref. 11, a translation-invariant wavelet will
produce better results. Denoising using orthogonal wavelets
usually exhibits visual artifacts that are caused by the Gibbs
phenomena in the neighborhood of discontinuities. This is
extremely undesirable for Raman imaging data because the
discontinuities in the Raman spectra usually contain the most
important information. The proposed translation-invariant
wavelets can suppress the Gibbs phenomena, which makes
the data smoothing more appealing. In addition, these wavelets
offer computational advantages. As a powerful mathematical
approach, the application of wavelets to spectral data has not
been fully exploited.7 In addition to the denoising, wavelets can
also be applied to other problems such as compression of the
hyperspectral data and baseline correction. We are currently
exploring the application of wavelets to other spectroscopic
imaging problems.
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